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Compressed sensing (CS) approach has received significant interest in remote sensing applications recently. Only few 
attempts however have been reported on CS based UWB-OFDM SAR imaging. This paper presents a novel scheme for 
high-resolution SAR based on UWB-OFDM system using CS techniques. Enhanced resolution is obtained using UWB-
OFDM waveforms and the computational burden is reduced using the CS methods. Sparse imaging methods are 
developed to deal with UWB-OFDM SAR using greedy algorithms including orthogonal matching pursuit (OMP), regularized 
OMP (ROMP) and compressive sampling matching pursuit (CoSaMP). Performance of these algorithms is analyzed and 
compared to conventional imaging techniques based on simulated results. 
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1. Introduction 
 

Synthetic aperture radar (SAR) provides an effective 

technique for high-resolution imaging. In SAR pulses are 

transmitted at spaced intervals called pulse repetition 

interval (PRI), and the reflections at each PRI are 

processed to reconstruct SAR image of the terrain [1]. 

Range resolution of  SAR images can highly be increased 

by exploiting ultra-wideband UWB waveforms that 

exceeds 500 MHz in  bandwidth as radar pulse [2]. In 

addition to enhancing resolution, UWB techniques provide 

good capacity of penetration. Another approach for 

enhancing SAR imaging depends on exploiting OFDM 

techniques. An OFDM signal includes several orthogonal 

sub-carriers transmitted over a single transmission path. 

Each subcarrier occupies a small part of the total signal 

bandwidth [3]. OFDM can be used to implement SAR 

imaging in hostile environment. OFDM is used to increase 

the swath of SAR imaging and to obtain signal diversity to 

enhance signal to noise ratio. Feasibility study of OFDM 

based SAR has been investigated recently [4-9].  

UWB-OFDM SAR thus has potential of enhancing 

various SAR applications. Large amount of echo samples, 

however, must be collected and processed, which leads to 

an excessive burden on the conventional matched-filter 

(MF) based SAR imaging processor. Compressed sensing 

technique is adopted to reconstruct the original signal 

using limited measurements beyond the Nyquist sampling 

constraints. CS thus reduces the computational complexity 

and improves reconstruction results as compared to 

traditional MF based SAR imaging systems. Moreover, 

super-resolution can be achieved by employing the 

sparsity of the target based on CS theory.  

CS techniques have been frequently used in many 

applications due to its compressed sampling and exact 

reconstruction capability. In radar applications, CS reduces 

the computational complexity and enhances the resolution 

of the radar system. Compressive radar imaging is 

addressed in [10]. CS based random frequency SAR 

imaging is introduced in [11]. An imaging algorithm for 

high-resolution space-borne SAR using CS on azimuth 

displacement phase center antenna (DPCA) is described in 

[12]. This article opens new prospects for UWB-OFDM 

SAR waveforms by focusing on the OFDM signal, 

illustrating how it fits in a natural way with CS based 

greedy algorithms as processing tools.  

The structure of the paper is as follows: UWB-OFDM 

pulse-shaping is described in section 2. Compressive 

UWB-OFDM SAR imaging and analysis of greedy 

algorithms are presented in section 3. Comparison of 

greedy algorithms based on OFDM signal is analyzed in 

section 4. UWB-OFDM SAR imaging results based on 

MF and CS method presented in section 5. Conclusions 

are given in section 6. 

 
2. UWB-OFDM signal generation  
 

UWB-OFDM signal is generated according to the scheme 

of randomly populating the digital frequency domain 

vector as: 

                            Ψω = [Пns П0 Пps]                              (1) 

where, Πps and Πns represent the positive and negative 

sub-carriers respectively whereas Π0 represents the 

baseband DC value. Inverse Fast Fourier Transform (IFFT) 

is applied to Ψ𝜔 to get the discrete time domain OFDM 

signal as: 
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                           Ψtx(t) = Ϝ−1[Ψω]                            (2) 

In the analysis of this paper, UWB-OFDM waveforms 

are generated using the parameters as follows: number of 

sub-carriers = 256, sampling period, Δts= 1ns results in 

baseband bandwidth, B0 = 1/2Δts = 500 MHz. 

 
3. Compressive SAR Imaging based on UWB- 

OFDM 
 

In some special applications (such as ocean ship 

monitoring, aircraft detecting and tumor detection in 

human head), the number of dominant scatterers is much 

smaller than the number of overall samples. In these cases, 

SAR echoes are considered as sparse signal. Thus, sparse 

reconstruction can be used in such applications. High-

resolution imaging with SAR can be achieved by using 

UWB-OFDM waveforms. However, due to higher 

sampling speed of UWB scale, it leads to extremely high 

data rate on SAR imaging processor. Sparse signal 

recovery using CS theory is used, by which only a small 

amount of radar echoes are used for SAR imaging. The 

raw echo signal can be processed for SAR imaging with 

high probability by using greedy algorithms such as OMP, 

ROMP and CoSaMP. Thus, sample size of SAR echoes 

can be reduced considerably by CS method. 

 
A. Orthogonal Matching Pursuit (OMP) 

OMP is an iterative greedy algorithm that selects the 

column which is most correlated with the current residuals 

at each step [13-15]. For a given measurement matrix 

Ψ ∈ Rm×n(𝑛 > 𝑚), the CS recovery algorithm generates 

an estimate of K-sparse vector x ∈ Rnfrom a set of linear 

measurements given as 

                                    𝑦 = Ψx + ε                                     (3) 

where, y is the measurement vector, 𝛹 denotes the 

measurement matrix, x is the original signal to be 

recovered and 𝜀 denotes the amount of noise. Due to the 

prior information of signal sparsity, x can be perfectly 

recovered using efficient recovery algorithm. Among 

many recovery algorithms in the literature, greedy 

methods receive significant attention for practical benefits. 

OMP algorithm has received significant interest because 

of its simplicity and efficient recovery performance. It has 

also been shown that OMP is reliable for reconstructing 

both sparse and near-sparse signals [16]. OMP estimates 

the sparse signal as 

                    �̂� = arg 𝑚𝑖𝑛𝑥 ‖𝑦 − Ψ𝑥‖2                     (4) 

 

A widely used framework for OMP based sparse 

signal recovery is the Mutual Incoherence Property (MIP) 

and is defined by 

                      𝜇 = max𝑖≠𝑗|〈Ψ𝑖,Ψ𝑗〉|                           (5) 

where, Ψ𝑖 and Ψ𝑗 denote the i
th

 and j
th

 column of Ψ 

respectively. 
 

B. Regularized Orthogonal Matching Pursuit 
(ROMP) 

ROMP provides the strong guarantees of the 

optimization method and faster processing. ROMP is a 

greedy algorithm, but correctly recovers any sparse signal 

using any measurement matrix that satisfies the Restricted 

Isometry Property (RIP).  

Similar to OMP, the observation vector, 𝑦 = Ψ ∗ Ψx 

is used as a good local approximation to the sparse signal 

x. Since the RIP guarantees that every s columns of Ψ are 

close to an orthonormal system, it doesn’t not choose just 

one coordinate as in OMP, but up to s coordinates at each 

iteration using the observation vector. A regularization 

step is included which will guarantee that each coordinate 

selected contains an even share of the information about 

the signal. This allows us to translate captured energy of 

the signal into captured support of the signal. 
 

C. Compressive Sampling Matching Pursuit 
(CoSaMP) 

 

ROMP bridges a critical gap between the major 

approaches in compressed sensing. It provides the speed of 

the greedy approach and the strong guarantees of the 

convex optimization approach. However, the requirements 

imposed by ROMP on the RIP were slightly stronger than 

the convex optimization. ROMP provides weakened error 

bounds in case of noisy signals and measurements. These 

issues were resolved by Compressive Sampling Matching 

Pursuit (CoSaMP). It provides both uniform guarantees as 

well as fast runtime, while improving upon the error 

bounds and restricted isometry requirements of ROMP. 

Unlike some other greedy algorithms, CoSaMP selects 

many components at each iteration. 

The advantage of using OFDM signal in greedy 

algorithm based SAR imaging is that it ensures the Mutual 

Incoherence Property (MIP) to be small enough because 

the SAR system transmits a unique pulse at each PRI by 

using random sub-carrier composition. Moreover, it 

ensures lower cross-correlation among the pulses. The 

procedure for CS based SAR image reconstruction used in 

this article is as follows: 

 Generate SAR raw echoes considering point targets 

at each cell of the target area.  

 Select randomly a small amount of raw echoes to 

create measurement matrix (Ψ).  

 Create sparse signal (x) and compute observation 

vector (y).   

 Recover the signal using chosen algorithm (�̂�). 

 2D SAR imaging of sparse targets. 

 

4. Comparison of Greedy Algorithms based  
           on UWB-OFDM Signal 

 

The relationship between the sparsity and the number 

of measurements is investigated in this section. In the 

simulation, for each trial we generate binary signals, as 

well as an independent Gaussian measurement matrix, 

considering different sparsity levels and various number of 
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measurements. Then, we apply OMP on the measurements 

of that signal and count the number of times the signal is 

recovered correctly out of 250 trials. Figure 1 shows the 

relationship between the number of measurements and the 

sparsity level to guarantee that correct recovery occurs for 

99% of the time. 

 

Fig. 1. Sparse signal recovery using OMP as a function 

 of the number of measurements for different sparsity levels. 

 

Figure 2 depicts the number of iterations executed by 

CoSaMP under the same setting described above for 

sparse signals. The number of iterations in each scenario is 

averaged over the 250 trials, and the results are plotted 

against the sparsity of the signal. 

 
 

Fig. 2.Sparse signals recovery using CoSaMP as a function  

of the number of measurements for different sparsity levels. 

 

 

Fig. 3 depicts the percentage of sparse signals 

reconstructed exactly using ROMP. The horizontal axis 

represents the number of measurements and the vertical 

axis represents the exact recovery percentage. 

The plot demonstrates that often far less iteration is 

actually needed in some cases. It is observed that the 

ROMP provides 100% recovery with minimum number of 

iterations among the three algorithms. 
 

 
 

Fig. 3. Sparse signal recovery using ROMP as a function 

of the number of measurements for different sparsity 

levels. 

 

 

5. Compressed Sensing based SAR imaging 
 
The scenario involves the UWB-OFDM SAR imaging 

of target profile with three targets. The aim is to verify the 

imaging capability of the orthogonal waveforms as SAR 

transmitted pulse. ROMP is used as it provides the 

minimum number of iterations to achieve 100% recovery. 

Let us consider the imaging of a space with three-target 

profile as shown in Fig. 4. 

 

 
 

Fig.4. Space with three-target profile 

 

Stripmap SAR imaging topology is used for echo 

generation based on the proposed UWB-OFDM waveform 

as transmitted pulse while greedy algorithm is used for 

image reconstruction. The imaging results based on greedy 

algorithms are shown in Fig. 5. Figure 5(a) shows the 

reconstructed image using MF based RDA while Figure 

5(b) shows the imaging results using ROMP based 

compressed sensing techniques. The CS based result 

shows that the position and scattering coefficients are 

clearly reconstructed without ambiguities as compared to 

MF based RDA. Figure 5(c) shows the image 

reconstruction using ROMP based CS approach with 

linear interpolation to achieve the actual size and shape of 

the targets. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. Reconstructed image with three targets (a) using 

MF based RDA (b)  using ROMP based CS technique. (c)  

using ROMP based CS with interpolation. 

 

The performance of the CS method in the noisy 

environments depends on the number of samples used in 

the measurements. Figure 6 shows the effects of amount of 

echo samples used in CS method with SNR = 10 dB. It is 

observed that the scattering centers are reconstructed with 

higher amplitudes when larger number of echo samples 

(50%) is used.     

 
                                      (a) 

 
                                      (b) 

 
Fig. 6. CS based imaging with SNR = 10 dB. using 25% 

echo samples (a) and 50% of echo samples (b). 

 
 
6. Conclusions 
 

UWB-OFDM SAR imaging has been investigated 

with different CS techniques. Various greedy algorithms 

are used to reduce the processing complexity of raw SAR 

data. It is shown that the proposed UWB-OFDM SAR 

indeed provides a potential solution to high-resolution 

remote sensing. Simulated results has been demonstrated 

and analyzed to show the effectiveness of the proposed 

method. 
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